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Abstract. The frequencies of free oscillation of a fluid in a rectangular tank are reduced by the introduction of 
a rigid internal structure. This paper gives general, approximate methods for the calculation of the oscillation 
frequencies when the structure is a cylinder of arbitrary cross section spanning the tank, and with generators 
normal to one pair of vertical faces. Particular results are given for submerged, circular cylinders and both vertical 
and horizontal thin baffles. 

I. Introduction 

A consequence of the theorems on eigenvalue problems described by Courant and Hilbert [ 1, 
Chapter VI] is that a rigid structure introduced into a tank of fluid will reduce the frequencies 
of free oscillations as long as the free surface is unchanged. A number of recent papers have 
investigated such changes for two-dimensional motions in a rectangular container of fluid. 
Evans and Mclver [2] considered the case of a thin vertical baffle introduced into the tank, 
from either above or below, while methods for structures of finite thickness are given by 
Watson and Evans [3] and they present calculations for rectangular blocks and submerged 
circular cylinders. Davis [4] reconsidered some of the problems investigated by Watson and 
Evans and gives alternative methods of solution. 

In all of the work mentioned above the fluid motion is assumed to be two dimensional; 
the current work gives approximate methods for equivalent three dimensional motions. The 
geometries considered are where a cylinder of arbitrary cross section spans a rectangular 
tank so that the cylinder generators are normal to two opposite vertical faces of the tank. In 
particular, results are given for circular cylinders and thin baffles. The methods given may 
also be used for some of the two-dimensional problems discussed in references [2-3]. 

In Section 2 a simple approach is described for obtaining approximate solutions when a 
typical dimension of the cylinder cross section is small compared to the length scale of the 
fluid motion. A similar method has been used in other cavity resonance problems; for example, 
Davidovitz and Lo [5] calculate cut-off wavenumbers in electromagnetic wave guides. Here, 
the procedure is illustrated for two-dimensional motions when a submerged circular cylinder 
is introduced into a rectangular tank and for three-dimensional motions in the present of a thin 
baffle. For three-dimensional motions involving structures of non-zero cross-sectional area 
much more care is required and an alternative procedure is given in Section 3. This is based 
on a scheme of matched asymptotic expansions and is similar to that used by Mclver [6] for 
fluid oscillations in channels. An expression is derived for the natural oscillation frequencies 
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Fig. 1. Definition sketch. 

of fluid in a rectangular tank containing a submerged cylinder of arbitrary cross section. The 
approximations are compared with numerical solutions in Section 4. 

2. Formulation and small structure approximation 

This paper is concerned with sloshing in a rectangular tank of uniform depth h. Cartesian 
coordinates are chosen with y = 0 in the mean free surface and the fluid occupies Ixl < b, 
0 < y < h, I zl < d. Under the usual assumptions of the linearised theory of water waves, the 
flow may be described by a velocity potential satisfying Laplace's equation in the fluid region. 
Bodies occupying Izl < d and with generators parallel to the z direction will be introduced 
into the tank and a cross section is illustrated in Fig. 1. In this cross section, a reference point 
within the body has coordinates (x, y) = (x0, Y0), the body surface is denoted by C and the 
free surface by F .  The boundary conditions of no flow through the walls at z = -[-d may be 
satisfied by factoring out from the potential a z-dependence cosp(z - d), where p = LTr/2d 
and L is any integer. Time-harmonic motions of the fluid may therefore be described by a 
potential of the form 

• (x, y, z, t) = ¢(~,  y) cosp(z  - d) cos~ t  

where 

02¢ 

(2.1) 

Ox2 + 02¢ 
_ _  cOY - - - ~  _ p2¢ = 0 (2.2) 

in the fluid. The potential ¢ must also satisfy the linearised free-surface condition 

o¢ 
K ¢  + ~yy = 0 on y = 0, Ixl < b, (2.3) 

where K = w2/g, and the condition of no flow through the solid boundaries 

0_.__¢¢ = 0 on C, {Ixl = b, 0 < y < h} and {y = h, Ixl < b}. (2.4) 
On 

where n is a normal coordinate measured into the fluid. 
It is easily verified that solutions of the above problem when there is no body within the 

tank are of the form 

CM = COS O ~ M ( X  - -  b)cosh kM(y -- h), (2.5) 
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where 

~M = MTr/2b, kM = (Ol~ 4 +p2)1/2  (2.6) 

and M is any integer. From the free-surface condition (2.3) the corresponding value of the 
frequency parameter K is 

KM = kM tanh kMh. (2.7) 

If M is odd these modes of oscillation are antisymmetric in x while if M is even the modes 
are symmetric in x. For a given tank geometry there are a doubly infinite set of modes which 
can be identified by the integers L and M in the definitions ofp  and c~M. 

The aim is to calculate the change in K when a body of uniform cross-section spans the 
tank in the z direction. First of all a simple approach is suggested. Applying Green's theorem 
over the boundaries of the fluid domain to the potentials with and without the body, ¢ and CM 
respectively, gives 

fF /~¢ OCMOn - - ¢ m o ~ ) d S + J c  f ¢ OCm~ds =O, (2.8) 

where the body boundary conditions (2.4) have been used to eliminate a number of terms. 
Replacing the normal derivatives on F using the free-surface condition (2.3) and rearranging 
yields 

K = KM - d p ~  ds ¢¢M ds. (2.9) 

When a typical dimension of C is much smaller than the cross-sectional length scale of 
the fluid motion, equation (2.9) may be used, with care, to estimate K by observing that over 
most of the fluid domain the solution will differ little from that given in equations (2.5-7). 
As an illustration, suppose C is a circle of radius a centred on (x0, y0) and the motion is 
two-dimensional, that is p = 0. A typical length scale of the fluid motion is k~/ so that an 
approximation is sought under the assumption kMa << 1. Define plane polar coordinates 
(r, 0) by 

x - x o = r s i n O ,  Y - y 0 = r c o s O .  (2.10) 

Near (x0, Y0) the unperturbed potential may be expanded as 

CM = cos kM (xo -- b) cosh kM (YO - h) - kMr sin 0 sin kM (xo - b) cosh kM (Yo - h) 
+kMr cos 0 cos kM(xO -- b) sinh kM (Yo - h) + O( ( kMr)2). (2.1 l) 

The terms in (2.11) are solutions of Laplace's equation and represent a local uniform flow. 
Providing kMa is small the perturbation to the motion from introducing C will be negligible 
except in the immediate vicinity of the body. Near the body, ¢ is written 

¢ = cons tan t - kM(r+~)s inOs inkM(zo -b )coshkM(Yo-h )  

+kM (r + ~ ) cos O cos km(xo - b) sinh km(Yo - h ) + O( (kMr ) 2) (2.12) 
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which has zero normal derivative on C and for large r /a  the uniform flow terms correspond 
with those in the unperturbed potential (2.11). The value of the constant in (2.12) is not needed 
for the present calculation as it does not contribute to the integrals in (2.9). The integral over 
C is approximated using the forms of ¢ and eM given by the terms displayed explicitly in 
equations (2.11) and (2.12). The influence of the body is small in the free-surface integral and 
¢ is approximated by eM over F using (2.4). With these approximations to the potentials, 
(2.9) yields 

27rk~a2 (sin 2 kM(xo - b) cosh 2 kM(Yo - h) 
K ,~ KM bcosh 2 kMh 

+ c o s  2 kM(xo - b) sinh 2 kM(YO - h) ) (2.13) 

with kM = MTr/2b. 
The above calculation can be adapted to produce the correct leading-order approximation 

to K for non-zero p, but this is not straightforward. Any structure with non-zero area of cross 
section forces source-like terms in the local flow when p ~ 0. As will be seen in the following 
section, finding the leading-order changes in the frequency then involves taking further terms 
in the expansion (2.1 l) and choosing a suitable value for the constant in (2.12). To treat this 
case with more confidence, to formalise the above and to generalise to arbitrary contours C 
another approach is presented in Section 3. 

For thin baffles having negligible cross-sectional area, so that the source terms mentioned in 
the previous paragraph are not present, there is no difficulty in applying the above procedure for 
non-zero p. For example, consider a surface-piercing baffle occupying 0 < y < a at x = x0. 
Near (x, y) = (x0, 0), the unperturbed potential eM in equation (2.5) may be expanded as 

e M  ---- COS O~ M (X 0 -- b) cosh kMh - a M  (x  -- XO) sin a M (X 0 -- b) cosh k M h 

--kMy COS O~ M (X 0 -- b) sinh kM h + O((ol M (X -- X0))2, (kMy)2) (2.14) 

and therefore locally there is a combination of horizontal and vertical uniform flows. The 
free-surface condition (2.3) is approximated locally by a rigid-lid condition. The constant 
and vertical flow terms in (2.14) do not contribute to the integral over C in (2.9) because of 
their symmetry about x = x0. For the horizontal flow term, the corresponding local potential 
that has zero normal derivative on the baffle and its image in y = 0, and recovers the term 
proportional to (x - x0) in (2.14) at large distances, is 

¢ = ~ { - -aM sin aM(X0 -- b)cosh kMh[(x - xo + iy) 2 + a2] 1/2 } .  (2 .15)  

This form of ¢ is used in the integral over C in (2.9) while over the free surface ¢ is 
approximated by CM, under the assumption that the disturbance created by the baffle is small. 
This results in 

7ra2a2I sin 2 aM (xo -- b). (2.16) 
K = KM 2b 

This result has been confirmed and extended to higher order using the formal solution method 
of Section 3 by Jeyakumaran [7]. 

For a bottom-mounted baffle occupying a < y < h at x = x0, the result corresponding to 
(2.16) is 

rra2a2 sin 2 aM(XO -- b) (2.17) 
K = KM - 2bcosh 2 k u h  
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and for a horizontal baffle occupying b - a < x < b at y = go 

7ra2k]~ sinh 2 kM(YO - h). (2.18) 
K = KM - 2bcosh 2 kMh 

3. The submerged cylinder by matched asymptotic expansions 

The contour C is taken to be fully submerged with the typical dimension a much less than the 
minimum distance of C from the boundaries (including the free surface). The boundary value 
problem to be solved is given by equations (2.2-4). Define 

O~ = (k 2 -- p2)1/2 (3.1) 

where k is the positive real root of 

K = k tanh kh. (3.2) 

As may be seen from the solution to the unperturbed problem, equations (2.5-7), or the 
eigenfunction representations of the multipoles given in Appendix A, c~ and k are the natural 
parameters to describe the horizontal and vertical variations in the wave motion. In the absence 
of C, a = aM --= Mrc/2b where M is an integer. For the perturbed problem with C introduced 
into the tank, define 

a = MTr - 2c~b. (3.3) 

The aim is to determine an approximation to a, and hence the change in K resulting from the 
introduction of C, under the assumption that a is small compared with all other length scales. 
Define ~ = a / h ,  assumed to be small, and put 

O" = f(c)O" 2 + . . . ,  (3.4) 

where f (e )  << 1 and a2 = O(1). The form of f ( s )  is to be determined (it turns out that 
f(e) = e 2, hence the adoption of the subscript 2 in (3.4)). Substituting (3.3) and (3.4) into 
(3.1) gives 

k = k M  1 - f ( ~ ) ~ + . . .  (3.5) 

and so from (3.2) 

K = KM(1 - f (e)V +.. .) ,  (3.6) 

where 

MTra2 ( k2'h KMh) (3.7) 
V = 4k21b-------- 5 1 + K-----ff~1 - 

INITIAL DEVELOPMENT OF INNER AND OUTER SOLUTIONS 

The solution is by the method of matched asymptotic expansions. Inner and outer regions 
will be defined and corresponding solutions developed which are only fully determined when 
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matching in an overlap region has been carried out. The initial aim is to obtain the leading-order 
non-constant terms in the inner and outer solutions. 

In the outer region, at distances r >> a from C, a non-dimensional radial coordinate is 
defined by 

R = r /h ,  (3.8) 

where the polar coordinates (r, 0) are defined by (2.10). The complete outer solution • (R, 0) = 
¢(r,/9) is expressed as 

o o  

= Aogo(R,O)+ Z(.Angn(R,O)+ Bnhn(R,O)) 
n----1 

(3.9) 

where 

gn = s i n a ¢ ~  ) and h~ = s i n a ¢  (b) (3.10) 

and ¢(b) and ¢(n b) are the multipole potentials defined in appendix A, that is they are singular 
solutions of the modified Helmholtz equation satisfying all the conditions of the problem 
except that on C. The additional factor of sin a has been introduced for convenience. Write 

9n = 9n,l + sinagn,2 and hn = hn,1 + sina hn,2 (3.11) 

where 

gn,2 = Kn(SR)  cosnO and hn,2 = Kn(SR)  sinn0 (3.12) 

are the singular parts of the multipoles and 6 = ph. Thus, for example, 90 is a source while 91 
and hi are a horizontal and vertical dipole respectively. From the results in appendix A, part 
(b), the non-singular parts have expansions of the form 

gn,1 : Z (Cnq COS qO q- dnq sin qO)Iq (SR) 
q=O 

(3.13) 

c o  

hn,1 = ~(enqcOSqO + fnqsinqO)Iq(6R). 
q=O 

(3.14) 

In the above Kn and Iq denote modified Bessel functions. By virtue of (3.3) and (3.4), the 
expansion coefficients in equation (3.13) have expansions in terms of e in the form 

C.nq = Cnq,O -'}- f(E)Cnq,2 n t - ' ' "  , (3.15) 

where C~q,j = O (1), with similar expansions for the remaining coefficients in (3.13-14). Note 
that the O(1) terms in these coefficient expansions arise from the first terms of the summations 
over m in equations (A31-32). 

From previous work on scattering by submerged bodies, for example Davis and Leppington 
[8], and from the related work of Mclver [6] it is clear that the outer solution will contain only 
sources and dipoles at leading order. Thus, the leading-order outer solution is written 

~(0) = aog(oO~ + algl°~ + Blhl°,l (3.16) 
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where, in a standard notation, a superscript in parentheses is used to denote the order in 6. 
of a quantity. (This form for ff~(0) may be justified by retaining a full multipole expansion 
and allowing the matching to eliminate all but the source and dipole terms.) The problem is 
homogeneous so the order in 6. of the solution may be freely chosen, it is natural to take it to 
be O(1) as in (3.16). 

For an inner region within distances r << h of C, a radial inner coordinate is defined by 

p = f la .  (3.17) 

In terms of the inner coordinates the inner solution ¢(p, 0) - ¢(r, 0) must satisfy the field 
equation 

1 0 (~___~p) 1 0 2 ¢  62'2¢----0 (3.18) 
p Op p -q- p2 O02 

and the boundary condition 

O¢/On = 0 o n  C .  (3.19) 

The solution is fully determined by matching with the outer solution. 
Using well-known expansions of the modified Bessel functions, the inner expansion of the 

leading-order outer solution, equation (3.16), is 

~(0,1) = H0 + H16.p cos 0 + 1i26. p sin 0, (3.20) 

where 

Ho = Aocoo,o + AlClO,O + BlelO,0, (3.21) 

I I l =  ½'(A0c01,0 + AlCll,0 + Blell,0), (3.22) 

I-I2 • l'(Aod01,o + Aldll,0 + Blfll ,0). (3.23) 

Here, ~(P'q) denotes the result of expressing kI,(p) in inner variables and expanding up to 
O(6.q). A similar notation is used for the inner solution. Thus, ~(q) is the inner solution up to 
0(6. q) which when expressed in terms of outer variables and expanded to 0(6. p) is denoted 
by ¢(q'P). The matching principle requires that ¢(q'P) = ~I '(p'q) when both are expressed in 
the same coordinates. See Crighton and Leppington [9] for further details of the matching 
principle. 

Equation (3.20) suggests an inner development 

¢(1) = 19o + 6.{Pl + P2(pcosO + rl(p,O) ) + P3(p sin0 + T1(p, 0))}, (3.24) 

where, from equations (3.18) and (3.19), rl and TI are harmonic functions satisfying 

_ OTI  O n Orl _ 0 (pcos 0) and - (p sin0) on C. (3.25) 
On On On 

The potentials rl and TI are respectively the disturbances to a uniform flow past C in the 
horizontal and vertical directions respectively. From Batchelor [10, p. 127], as p --+ oc 

cosa .ksina 
TI ---= V + - -  -t- O(p -2) (3.26) 

P P 
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and 

Tl = T c°s0 + A sin8 + O(P -2) (3.27) 
P P 

where the dipole coefficients v, A, T and A are assumed known. The outer expansion of (3.24) 
when expressed in inner coordinates is therefore 

~_3(1,0) = Po + ¢(P2pcosO + P3psinO). (3.28) 

Matching (3.20) and (3.28) gives 

P0 = ri0, P2 = II1, P3 = H2. (3.29) 

INNER AND OUTER SOLUTIONS TO O(e 2) 

The above matching still leaves undetermined the constants A0, Al and Bl which were 
introduced in equation (3.16). The inner and outer solutions are now extended to O(e 2) and 
the subsequent matching results in a set of homogeneous linear equations for these constants. 
The requirement that these equations have a non-trivial solution yields the desired frequencies 
of oscillation for the fluid. 

Further expansion of the inner solution (3.24) using (3.26-27) gives 

~(1,2) = IX 0 _+_ e Pl + Ill + ~ ( v c o s 0  + Asin0) 

-+-rI 2 - -  + 5 ( T c o s 0  -q- Asin0) . (3.30) 

The dipole terms in (3.30) appear at an O(¢ 2) higher than the uniform flow terms which 
can only be reconciled with the outer solution if the same is true in the inner expansions of 
the dipole potentials. From (3.11) this requires a = O(¢ 2) and so the choice f(e) -- ¢2 is 
made. 

Retaining only the multipoles that can possibly match with (3.30) the outer solution can 
now be continued as 

9(2) : Aog~2) + A,912) + Blhl2> + ¢{Co9~O) + C, glO)+ D,hlO)} { 2 } 
+¢2 Eog(o °) + ~-~(E~g (°) + Fnh (°)) . (3.31) 

n = l  

Note that 
OO 

g (2) = Z[(Cnq,0 -4- ¢2Cnq,2)cosqO + (dnq,O + e2dnq,2)sinqO]Iq(aR) 
q=O 
+¢2~r2Kn (5R) cos nO (3.32) 

with a similar expression for h~  ) . The inner expansion of (3.31) yields 

02A 1 cos0 02B 1 sin0 
xlt(2'2) H 0 + ~  II3 + IIlpc°sO + ii2psinO + ~ p 8 - 7 )  

e o2A 0 + e2/1-i4 _ o.2A 0 In p + lisp cos 0 + Il6P sin 0 + 1I7p 2 cos ~ ~2  In 28 

+il8p2 sin 20 + IIo 1(~2p2 } . (3.33) 
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Only the form of this expansion is needed, the full details of the constants 1-Ira, m = 3, 4 , . . . ,  8, 
are not required and so are omitted. The inner solution is continued as 

~b (2) = ~b (1) Jr- e 2 lneP4 + e2~b2, (3.34) 

where ga (l) is given by (3.24) and (3.29). The term at O(e 2 In e) is chosen as a constant as this 
is the only harmonic function satisfying (3.19) that can match with (3.33). Substituting (3.34) 
into (3.18-19) and equating like terms in e shows that ~b2 must satisfy 

1 0 / 0~b2" ~ 1 0 2 ~ 2  (~2ii0 (3.35) 
pop + 0 T  

in the fluid and 

O~2/On = 0 on C. (3.36) 

~b2 ~- ~)2,p q- QO q- Ql(pcosO + rl(p, 0)) + Q2(psinO + TI(p, 0)) 

+Q3(pa cos 20 + T2(p, 0)) + Q4(p 2 sin20 + T2(p, 0)) 

which leads to an outer expansion for ~b (2) of 

{ ( cos0 ~(2,2) = ii0_{_g P1 q-II1 pcos0-~-u +A sin0 
P P / 

+II2 (ps inO+T c°sO Asin0)  } 8, 2 + + In e II 4 
P P / 

+e2{ l~2rr 2 2 ~  ~o *.top -- ¢~21"I0 l np+Qo+QlpcosO 

+Qzp sin 0 + Q3p 2 cos 20 + Q4p 2 sin 20~. 
) 

Matching (3.41) and (3.33) gives, in particular, 

~r2A0 = 821"Io S e2A1 27ra 2, ~ -- I I l v +  II2T, 
t72B1 
- -  - -  1 - I 1 A  Jr -  II2A. a 

(3.40) 

(3.41) 

(3.42) 

A particular solution of (3.35-36) is chosen in the form 

1 ~2"rr ^2 ~2,p "7- ~o .tl0p q- ~(p, 0), (3.37) 

where a(p,  0) is a harmonic function satisfying 

2 S 
~2 + a II02-7-aSa2 In p --+ 0 as p --+ oo (3.38) 

and the boundary condition 

0 ~ 2 _  
1 , 2 I I 0 ~ n  2 on C. (3.39) 

On 4 a 

Here S is the area of the cross section C, the logarithmic term in (3.38) is due to the flux 
across C indicated by (3.39). Bearing in mind the inner expansion (3.33), the full form for ~2 
is taken as 
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Substituting for II~, i = 0, 1,2, from (3.21-23) and expressing in matrix form gives 

YC01,0 -q- Td01,0 UCI1,0 -~- Tdll,0 Uell,0 -'F Tfll,0 AI -- ~2 AI , (3.43) 
Ac01,0 + Adol,o /~Cll,0 -~- Adll,o Aell,0 + Afll,0 B1 Bl 

which is a standard eigenvalue problem to determine (72. The eigenvalues are a repeated value 
a2 = 0 and 

(52 { S ^^ , ,CII,0 , ,e l l ,0  } 
o'2 -~ coo,o-~-~a 2 + (vcoLo + + (AcoLo + . (3.44) = Io~01,0) C01,0 Aa01,0) 

The zero eigenvalue leads to the remaining non-zero parts of the multipole potentials in (3.16) 
combining in such a way as to give a zero potential; the required result is given by (3.44). 

The expansion coefficients appearing in (3.44) follow by comparison of (3.13-14) with 
(A31-32). From (A17) and (3.3) 

sinh 2o~ob = - i  sin 2c~b = i ( -  1)M sin a (3.45) 

so that, bearing in mind (3.10), 

coo,o = - i F o o ( ( -  1) M cos 2~MXO + 1) cosh kM(h - Yo), 
2ikM 

c01,0 -- F00( ( - I )  M cos2aMXO + 1) sinhkM(h - Yo), 
P 

2ikM 
cll,0 -- r l0((--1)  M COS2aMxo + 1) s inhkM(h - Yo), 

P 

dol,o -- 2io~ x~ Foo(-  1 ) i  sin 2C~MXO cosh k i  (h - YO), 
P 

2kM A I o ( -  1)M ell,0 -- sin 2~Mxo sinh kM (h - Y0) 
P 

and so 

0- 2 - -  

7rh ~ Sp 2 , 
2ceMN2,AI L ~a2 (1 + (-- 1)M COS 2aMXO) cosh 2 kM (h - Yo) 

+v2k~1(1 + ( - 1 )  M cos 2c~ix0) sinh 2 kM(h - Yo) 

- ( T  - A)aMkM (-- 1)M sin 2c~Mx0 sinh 2kM (h - Yo) 

+A2a2~ (1 - ( -  1)M cos 2aMxo) cosh 2 kM (h - Yo) ~. 
) 

(3.46) 

(3.47) 

4. Results 

For the purposes of illustration, in this section attention will be focussed on two geometries 
of internal structure, the submerged circular cylinder and the surface-piercing vertical baffle. 
The first of these geometries was considered by Watson and Evans [3]. They employed a 
'wide-spacing' approximation in which the cylinder is assumed to be far from the tank ends 
and the scattering properties of a submerged cylinder in open water are used. For a cylinder of 
radius a, the result for a2 in equation (3.47) applies with the cross-sectional area S = rra 2 and 
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* n t l ~ n n d l t l h , l ~ n t t l i n i t  

)c )(  r(  

x ~ 

x \ \  
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x ~ 

\ \  

M ~ I  ~ 

0 ~ J I I I I I ~ , I i q , I P I r I I I i I I ' "  
0 . 0  0.1 02 03 04 05 

Fig. 2. Frequency parameter Kb v. radius a/b for a circular cylinder with centre at (xo/b, yo/b) = (0, 0.5) in a 
tank of depth h/b = 1, long-tank wavenumber pb = 0. ( ) equation (4.1), ( . . . .  ), equation (4.2), ( x x x) 
exact solution. 

M = 3  

M = I  

i I l l  i ~ l l l  I P~ I I  l l l g l  r I I t l  * ' q  I 0 1 1 1  I I ~ I I  n 

0.0 0,05 0.1 0.15 0.2 0,25 . 0,35 0.4 

a/b 

Fig. 3. Frequency parameter Kb v. radius a/b for a circular cylinder with centre at (xo/b, yo/b) = (0, 0.6) in a 
tank of depth h/b = 1, long-tank wavenumber pb = 0. ( ) eouation (4.1) ( . . . .  ), equation (4.2), ( x x x ) 
exact solution. 

the dipole coefficients, defined in equations (3 .26-7) ,  given by v = A = 1 and A = T = 0; 
the oscillation frequencies then fol low from equation (3.6), namely 

K = KM(1 - ~'2V), (4.1) 

which reduces to (2.13) when p = 0. Comparison is made with numerical solutions using a 
standard boundary element method [11] in Figs. 2--4. In each case the frequency parameter Kb  
is plotted as a function of  non-dimensional cylinder radius a/b, where b is the tank half-width. 
These calculations, and others not presented here, suggest that equation (4.1) always works 
well  provided the distance of  the cylinder from the free surface is not less than the cylinder 
radius. In Fig. 3, the cylinder is sufficiently deeply submerged so that as the radius is increased 
the cylinder first touches the bottom rather than the free surface. In this, and similar cases, 
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× x 
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I 
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~ x  

l- 
\ x x  r 

x 

M = I  

I I I I 
0.0 0.1 0.2 0.3 0.4 0.5 

afb 

Fig. 4. Frequency parameter Kb v. radius a/b for a circular cylinder with centre at (a:(./b, yo/b) = (0.5, 0.5) in a 
tank of depth h/b = 1, long-tank wavenumber pb = 1. ( ) equation (4.1), ( . . . .  ), equation (4.2), (x x x) 
exact solution. 

equation (4.1) works well over almost the whole range of admissible a/b, although it should 
be noted that corresponding changes in Kb are not as significant. 

A substantial improvement in the range of validity of the approximate theory can be 
obtained by using an equivalent rational form to (4.1). Write 

K 1 +e2A  
- = l + e 2 ( a - B ) + O ( e  4) 

KM 1 + e2B 

which is equivalent to (4.1) provided 

A - B  = - V .  

If it is now required that 

K / K M  = C 

at a prescribed value e = ec, where C is to be chosen, then 

B = - V / ( C -  1 ) -  1/¢2c 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

and A follows from (4.3). It remains to choose e~ and C. One of the geometries considered 
by Watson and Evans [3] was a bottom-mounted rectangular block. For two-dimensional 
motions, as the block is extended to the free surface the frequencies of all modes approach 
zero. Guided by this, ec is chosen to be the value of e corresponding to the cylinder touching 
the surface and C is chosen to be zero for all modes. Results corresponding to the rational 
form are given by the dashed lines in Figs. 2-4 and a dramatic improvement in the accuracy 
of the theory is obtained. In the geometry of Fig. 3, the cylinder strictly cannot touch the 
free surface. However, the same rational approximation was used by allowing the cylinder to 
'pierce' the bottom of the tank. 

The results of Figs. 2-3 are for purely two-dimensional motions but Fig. 4 corresponds to 
three-dimensional motion, that is a non-zero value of the long-tank wave number p. It may be 
observed that for the lowest mode the best accuracy is obtained by using equation (4.1), rather 
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5 I ' I ~ ~ ' I i I * I l I i I 4 I , 
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Fig. 5. Frequency parameter Kb v. length a/h for a surface piercing baffle at xo/b = 0 in a tank of depth h/b = 2, 
long-tank wavenumber pb = 0. ( ) equation (2.16), ( . . . .  ), variational approximation, (x x x) exact 
solution. 

4 l~'~ ~ "x - I¢ - x "  -~ -  -~ -  ~ - ~ - x -  "-~" -K-  ~ - x- -x '-  -~e- "~ -  ~ 

3 ~ - ~ x . . . . . ~ _  . x _  ~ _ x_ _ x _  _ ~ _  . x _  ~ _ x _  . .x_  _ x _  ~ _ ~ _ x _  _~_ 

M = O  j 

0 i I , I , I , I r i , I i I I I I I ' 
0.0 0. I  0.2 0.3 0.4 0 5  0 6  0.7 0.8 0.9 1.0 

a/h 

Fig. 6. Frequency parameter Kb  v. length a/h for a surface piercing baffle at zo/b = 0.2 in a tank of depth 
h/b = 2, long-tank wavenumber pb = 1. ( ) equation (2.16), ( . . . .  ), variational approximation, ( x x x ) 
exact solution. 

than its equivalent rational form, and this appears to be true for all cases with non-zero p. Note 
the lowest mode for non-zero p is symmetric for symmetric geometries. For two-dimensional 
motions when p = 0, this mode corresponds to K = 0 and the lowest mode with non-zero 
K is antisymmetric for symmetric geometries. The accuracy obtained in Figs. 2-4 by the 
approximate formulae is typical of the comparisons made by the authors. 

Turning now to the surface-piercing vertical baffle, comparisons between the approximate 
formula (2.16) and accurate computations are made in Figs. 5-6. Here the frequency parameter 
is plotted against the baffle length to depth ratio a/h which always lies in the range zero to one. 
The accurate computations were made using the eigenfunction expansion method described for 
two-dimensional motions by Evans and McIver [2] and extended to non-zero p by Jeyakumaran 
[7]. In general, this approximation works well as long as the barrier submergence does not 
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exceed a tenth of the depth. A rational form of this formula may be generated easily as the 
natural frequencies of the fully-divided tank, corresponding to a/h = 1, are known. However, 
the rational forms so obtained do not perform as well as (2.16) for small a/h and, furthermore, 
another good approximation for larger a/h is available from Evans and Mclver [2]. Based 
on their eigenfunction method, Evans and Mclver obtained a 'variational' approximation and 
this is easily extended to non-zero p. The result is that the frequencies of the free oscillations 
must satisfy 

sin 2ab 1 
sina(b + x0) s i n a ( b -  x0) = ~ ~ snc2  (4.6) 

O0 n = l  

where 
OL 

sn = - - ( c o t h  an(b + xo) + coth an(b - xo) ), (4.7) 
a n  

l f L  COn = g ¢0(Y)¢n(Y) dr, (4.8) 

Cn(Y) = cos kn(h - y)/[½(1 + sin 2knh/2knh)] '/2, (4.9) 

2 2 a 2 = k2  _p2, a n  = k n +19 2, (4.10) 

{kn; n = 1, 2 , . . .}  are the real roots of 

K = -kn  tan knh (4.11) 

and k (=  iko) is the real root of 

K = k tanh kh. (4.12) 

Here L is that part of the depth not occupied by the baffle and this approximation may be used 
for any vertical thin plate; for the surface-piercing baffle L is a < y < h. Note that the limit 
p --+ 0 does not recover equation (3.1) of Evans and McIver [2] as there is a typographical 
error in that paper (the factor e 2 is omitted). Equation (4.6) is readily solved by a standard 
library foot-finding routine and results for a surface-piercing baffle are given in Figs. 5-6. 
Figure 5 is for two-dimensional motion and has the same geometry used for Figs 1, 5(a) 
and 6(a) of [2]; the symmetric M = 2 mode is unaffected by the presence of a thin barrier 
in the plane x = 0 and so is represented by a solid straight line in the figure. Similarly, in 
Fig. 6, the M = 0 mode for non-zero p has a fluid motion independent of x and so is also 
unaffected by the barrier. The variational approximation is reasonable over the whole range of 
barrier lengths but is particularly good for longer barriers; the variational and small structure 
approximations are complementary. 

Evans & McIver [2] and Watson and Evans [3] also use a wide-spacing approximation to 
good effect. However, this requires the scattering properties of the internal structure in open 
water to be known and these are found simply only for a restricted number of geometries. 

5. Conclusion 

The main results of this paper are simple formulae for the changes in the natural frequencies 
of fluid in a rectangular tank when some internal structure is introduced. For fully submerged 



Sloshing frequencies for rectangular tanks 551 

structures these formulae are good approximations over a wide range of parameters. For thin 
surface-piercing baffles they may be used in conjunction with other approximate solutions to 
cover the equivalent parameter range. It is noteworthy that the small-structure approximations 
work well even for the higher modes of oscillation when the length scales of the fluid motion 
are relatively small. 

Other geometries that might be treated by the same method include a ring damper running 
around the circumference of a cylindrical container and a vertical column standing in a tank 
of fluid. 

Appendix: Submerged multipole potentials 

(A) CONSTRUCTION 

The aim is to construct solutions of the modified Helmholtz equation that are singular at 
(x, y) = (x0, Y0) and satisfy all of the conditions of the problem, equations (2.2.-4), except 
for the condition on the body contour C. The construction is carried out in three stages. (i) 
Integral representations are obtained for the fundamental singular solutions of the modified 
Helmholtz equation, (ii) non-singular terms are added to satisfy the free-surface and bed 
conditions and (iii) further non-singular terms are added to satisfy the conditions on the 
vertical walls. 

( i ) Integral representations of fundamental singularities 

Let (X, Y) = (x - x0, y - Yo) be coordinates measured relative to the singular point. From 
Twersky [12, equation (31)], for Y > 0 

-- 7r---i2 ~,~°° e-(t2-kZ)l/zY(_~ --~ k2V/~-cOs(tX + n sin-l(t/k) ) dt (AI) Hn(kr)ine in° 

where Hn denotes the Hankel function of the first kind and order n. The substitution k = ip 
gives 

[ ~  e -zY cos( tX - in#) dt Kn (pr )e in° (A2) 
J0 Z 

where 

/3 = (p2 + tZ)l/2 (A3) 

and # is defined by 

sinh # = t ip and cosh # = /3 /p .  (A4) 

Now separate real and imaginary parts, and extend the definition to Y < 0 by making use of 
the relevant symmetry or antisymmetry of each multipole, to obtain 

e-/31YI Kn(pr) cos nO = (sgn y)n ~o ~ cos tX  cosh n~ 
/3 dr, n = 0, 1 , 2 . . .  (A5) 

and 

e-/3WI 
Kn(pr) s inn0 = (sgn y )n+ l  I ~ 

s in tX s inhn# 
/3 dt, n = 1,2, 3 . . . .  (A6) 

J0 
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The singularities in equations (A5) and (A6) will be referred to as symmetric and anti- 
symmetric (about X = 0) respectively. 

(ii) Free-surface and bed conditiens 

To construct symmetric multipoles satisfying the free-surface and bed conditions write 

/5 Cn = K~(pr) cos nO + (A(t) sinh ~y + B(t)  cosh ~y) cos t X  cosh n# dt. (A7) 

Substitution into the free-surface condition (2.3) and the zero flow condition on y = h, 
and making use of the integral representation (A5) for the singular part, gives simultaneous 
equations for A and B which when solved yield 

Cn = Kn(pr )cosn0  + e-;~(h-Y°)(K sinhi3y - flcosh/3y) 

- ( -  1)n(K +/3)e -zy° cosh j3(h - y)} c o s t X c o s h n #  
( g  co-s-ff'~--h--- ~ / 3 h ) / 3  dt. (A8) 

There are poles of the integrand corresponding to the roots of 

K = /3  tanh flh. (A9) 

Let k be the real positive root of (A9) then the corresponding pole is at t = (k 2 -p2)1/2 which 
lies on the path of integration for k > p. The path of integration is chosen to run beneath 
this pole in order to give outgoing waves at large distances. If k < p there is no pole on 
the integration path and the multipoles are non-radiating. These non-radiating multipoles for 
infinite depth were used by Ursell [13] to construct trapped wave solutions in the presence of 
a submerged horizontal cylinder. 

Alternative forms for ¢~ follow from replacing Kn(pr)cos nO by the integral representa- 
tion (A5). For y > Y0 the result is 

]'~ ( K - j3)e fly° - ( -1 )n (K  + j3)e -/3y° 
( K c o s h ~ / ~ - ~ s T ~ h - ~  c o s h ~ ( h -  y ) c o s t X c o s h n # d t  (A10) 

~o °° e -;~(h-y°) + ( -1)ne  ¢(h-y°) 
Cn = (Kcosh/3h - / 3  sinh/3h)/3 (K sinhj3y - f l c o s h f l y ) c o s t X c o s h n # d t .  

(All)  

For n = 0 equations (A10-11) are the results for the source solution of the modified Helmholtz 
equation given by MacCamy [ 14]. 

Following a standard procedure (see, for example, Mei [15, p. 380]) the multipole expan- 
sions may be expressed as eigenfunction expansions. Thus (A10) is rewritten as 

f ~  (K - ;~)e ~0 - ( -1 )~(K + fi)e-~yo 
¢n ½ coshZ(h - y)e  lX'coshn, dt (A12) 

where now the path of integration runs below the pole at t = (k 2 - p2)1/2 and above that at 
t = - ( k  2 - p2)1/2 when k > p. This integral may be evaluated using the residue theorem. 

and for y < Y0 
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There are further poles on the imaginary axis in the t-plane corresponding to the imaginary 
roots of (A9) denoted by 13 = +ikm, m = 1, 2, 3 , . . .  giving poles at 

t = +i(k 2 + p2)112 = -t-Jam. (A13) 

There are also branch points at t = +ip and suitable branch cuts must be inserted that do 
not cross the Nt-axis, but these do not cause any difficulties. Evaluating the integral with the 
aid of the closing semi-circular contours described by Mei, modified to circumnavigate the 
relevant branch cuts, yields 

oo 

¢~ = ~ F ~  cos k~(h - y)e -~mlxl, 
m = 0  

(A14) 

where 

lr {e_ikm(h_yo) rnm -- 2 ~ , . h N 2 ,  + ( -  1)he ~(h-y°) )  cosh nu~, (A15) 

sin 2k.~h 
N2~=½ 1 +  2k-m---h ] '  (A16) 

ko = - i k ,  c~0 = -ic~ = _ i ( ] ¢ 2  _ p2)1/2 (A17) 

and Um is defined by 

Jam ikm 
sinh um = , c o s h  Pm -- (Al 8) 

P P 

Equation (A14) is valid throughout the fluid, both (A10) and (A11) yield the same eigenfunc- 
tion expansion (A14). 

Similar calculations may be carried out for multipoles Cn that are antisymmetric in X. The 
form, equivalent to (A8), explicitly displaying the singularity is 

Cn = Kn(pr) sinn0 + e-~(h-Y°)(K sinhC~y - ~cosh~y) 

sin t X  sinh n# 
+ ( - 1 ) n ( K  +/3)e -~y° cosh~(h - y) ( K c o s - ~  ---~-si-~h)/3 dt. (119) 

As in (A10-11), the singular part may be incorporated into the integral using (16). The 
eigenfunction expansion representation is 

¢~ = sgn X y ~  Aura cos km(h - y)e -c~mlXI, (A20) 
m = 0  

where 
7/" 

Aura -- 2ic~mhN2 (e -ik'~(n-u°) - ( -  1)he ikm(n-u°)) sinh num, (A21) 

For k > p, the first terms in the series (A14) and (A20) give the propagating waves generated 
by the singularities at large distances. 
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( iii) Side-wall conditions 

To obtain multipole potentials appropriate to a closed basin, that is having zero x-derivative 
on x = +b, a similar strategy to that used in (A7) is adopted. Write 

~)(n b) = ~)n -~- E F,~mcoskm(h- y ) {Amcosh~m(X-  xo) + Bmsinhc~m(X - xo)}, 
m----0 

(A22) 

using the eigenfunction representation (A14) for ¢~, and apply the boundary conditions on 
x = -4-b to determine the unknown coefficients. The resulting multipole potentials are 

¢(b) = en + ~ I~m c°s km(h - y) {(cosh2amXo + e-2amb)cosham(X - xo) 
m=O sinh 2amb 

+ sinh 2amXo sinh am(X - xo)} (A23) 

and the corresponding result for the antisymmetric multipoles is 

o~ 
b(b) = en q- E A n m c ° S k m ( h -  y) {sinh2amXOCOSham(X- xo) 

m=0 sinh 2arab 

+(cosh 2CemXo - e -2amb) sinh Olm(X -- X0) }. (A24) 

(B) EXPANSION ABOUT SINGULAR POINT 

The generating function for the modified Bessel functions Iq is 

oo 
e½ Z(T+T-~) = ~ Tqlq(Z). (A25) 

q=-oo 

The substitutions Z = pr and T = ± exp(# + iO), where # is defined in (A4), give 

oo 

e±(Zv+itx) = Z eq( + l )q  coshq(# + iO)Iq(pr) (A26) 
q=0 

where So = 1 and eq = 2, q/> 1. Equation (A26) may be used to expand the integral terms in 
(A8) and (A19) to obtain 

- g (pr)cos O = ½ Z  qI (p )cosqO - 

- /3(e 2~y° + ( -1 )  q) - ( - 1 ) n ( K  +/3)(1 + (--1)qe2/3(h-Y°))} 

and 

en  - Kn(pr )  s inn0 = y~ Iq(pr) sinqO K(e 2zy° + ( -1 )  q) 
q=l  
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- / 3 ( e  2/3y° - ( - 1 )  q) -q- ( - 1 ) n ( K  + / 3 ) ( 1  - ( -1 )qe  2z3(h-y°)) } 

e - ~ h  sinh n# sinh qp dt 
x (/~c-osh~-h ---~s-~-hnh~-h)fl ' (A2S) 

These expansions are valid for 0 < r < 2y0. As h -+ cc in (A27) the result of Ursell [13, 
equation (11)] is recovered. 

To expand the summation terms in (A23) and (A24) a modification of the result (A26) is 
needed. Replace t by i(k 2 + p2)1/2 = iC~m to give 

OG 

e±(ikmY-amX) = Z Cq (-4-1)q cosh  q(Um + iO)Iq(pr) 
q=O 

(A29) 

where um is defined by 

sinh Um= iam/p and cosh Um = ikm/p. (A30) 

Thus 

and 

¢(n b/- n = 
{ ~ Fnm(cosh2amx0 + e -2arab) 

1 Z ~qZq(pr) C O S q 0  Z sinh2c~mb 
q=0 m=0 

O~ 

× ((--1)qe ikm(h-y°) q- e -ik~(h-y°)) cosh qu m -q- i sin qO 

rnm sinh2amXo(( 1)qeik,,~(h_yo) e -ikm(h-y°)) sinhqum} × " -  (A31) 

¢(21- { ~ Anm sinh 2o~mxo (( )qeikm(h_y,, ) 
: 1 Z ~qIq(pr) cosq0 Z sinh2otmb - 1  

q=0 m - 0  

+e-ik., (h-y0)) cosh qum + i sin qO ~ A~m (cosh 2C~mXO - e -2`~'~b) 
m=0 sinh 2c~,~b 

X ((-- 1)qe ikm(h-y°) -- e -ikm(h-y°)) sinh qum }. (A32)  
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